Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using Genetic Means to Dissect Homologous and Heterologous Protein–Protein Interactions of PKR, the Interferon-Induced Protein Kinase

Identifieur interne : 003B07 ( Main/Exploration ); précédent : 003B06; suivant : 003B08

Using Genetic Means to Dissect Homologous and Heterologous Protein–Protein Interactions of PKR, the Interferon-Induced Protein Kinase

Auteurs : Seng-Lai Tan [États-Unis] ; Michael G. Katze [États-Unis]

Source :

RBID : ISTEX:2CFF74C27C2BF2CC83F39DDCE96E520923C8EF08

English descriptors

Abstract

Abstract: The interferon-induced protein kinase, PKR, is a pivotal component of interferon (IFN)-induced cellular antiviral and antiproliferative response. The identification and characterization of proteins, of both viral and cellular origins, that interact with PKR have proven to be a valuable probe for unraveling the cellular regulation and function of PKR. Several studies have demonstrated that PKR forms dimers and that dimerization is likely to be required for activation and/or catalytic function. It is therefore important to elucidate the mechanism of PKR dimer formation and the role of PKR effectors in modulating kinase dimerization. Herein we describe the use of the two genetic approaches, the λ repressor fusion and the yeast two-hybrid systems, to detect and analyze homo- and heterotypic interactions with PKR. We also describe several biochemical methodologies commonly used in our laboratory to validate the genetic results. Although the examples in this article focus on PKR, the techniques can easily be adapted to investigate protein–protein associations in a variety of experimental systems. Finally, given the important role of PKR as a mediator of IFN-induced antiviral and antiproliferative effects, these studies may provide clues to the development of reagents that target PKR to enhance the therapeutic use of IFN in the treatment of disease.

Url:
DOI: 10.1006/meth.1998.0625


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Using Genetic Means to Dissect Homologous and Heterologous Protein–Protein Interactions of PKR, the Interferon-Induced Protein Kinase</title>
<author>
<name sortKey="Tan, Seng Lai" sort="Tan, Seng Lai" uniqKey="Tan S" first="Seng-Lai" last="Tan">Seng-Lai Tan</name>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2CFF74C27C2BF2CC83F39DDCE96E520923C8EF08</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1006/meth.1998.0625</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-QNF9XQ87-S/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002628</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002628</idno>
<idno type="wicri:Area/Istex/Curation">002628</idno>
<idno type="wicri:Area/Istex/Checkpoint">001316</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001316</idno>
<idno type="wicri:doubleKey">1046-2023:1998:Tan S:using:genetic:means</idno>
<idno type="wicri:Area/Main/Merge">003B56</idno>
<idno type="wicri:Area/Main/Curation">003B07</idno>
<idno type="wicri:Area/Main/Exploration">003B07</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Using Genetic Means to Dissect Homologous and Heterologous Protein–Protein Interactions of PKR, the Interferon-Induced Protein Kinase</title>
<author>
<name sortKey="Tan, Seng Lai" sort="Tan, Seng Lai" uniqKey="Tan S" first="Seng-Lai" last="Tan">Seng-Lai Tan</name>
<affiliation wicri:level="4">
<orgName type="university">Université de Washington</orgName>
<country>États-Unis</country>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
<affiliation wicri:level="4">
<orgName type="university">Université de Washington</orgName>
<country>États-Unis</country>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Methods</title>
<title level="j" type="abbrev">YMETH</title>
<idno type="ISSN">1046-2023</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998">1998</date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="207">207</biblScope>
<biblScope unit="page" to="223">223</biblScope>
</imprint>
<idno type="ISSN">1046-2023</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1046-2023</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acad</term>
<term>Academic press</term>
<term>Agar</term>
<term>Agar plate</term>
<term>Agar plates</term>
<term>Amino acids</term>
<term>Antiproliferative response</term>
<term>Antiviral</term>
<term>Antiviral function</term>
<term>Appropriate restriction enzymes</term>
<term>Assay</term>
<term>Binding buffer</term>
<term>Binding domain</term>
<term>Biochem</term>
<term>Biol</term>
<term>Blue colonies</term>
<term>Cdna</term>
<term>Cdna expression library</term>
<term>Cdna library</term>
<term>Cell debris</term>
<term>Cell growth</term>
<term>Cellular</term>
<term>Cellular inhibitor</term>
<term>Cellular proteins</term>
<term>Cellular regulation</term>
<term>Chem</term>
<term>Clone</term>
<term>Clontech</term>
<term>Clontech laboratories</term>
<term>Coexpression</term>
<term>Cold spring harbor</term>
<term>Cold spring harbor laboratory press</term>
<term>Coli</term>
<term>Coli strains</term>
<term>Competitive inhibitor</term>
<term>Dimer</term>
<term>Dimer formation</term>
<term>Dimerization</term>
<term>Dimerization domain</term>
<term>Dimerization process</term>
<term>Dimerization properties</term>
<term>Direct interaction</term>
<term>Encoding</term>
<term>Eppendorf tube</term>
<term>Experimental systems</term>
<term>Falcon tube</term>
<term>False positives</term>
<term>Forms dimers</term>
<term>Further analysis</term>
<term>Fusion</term>
<term>Fusion protein</term>
<term>Fusion proteins</term>
<term>Gal4</term>
<term>Gene fusion</term>
<term>Genetic approaches</term>
<term>Genetic results</term>
<term>Heterotypic</term>
<term>Heterotypic interactions</term>
<term>Hf7c</term>
<term>High levels</term>
<term>Homo</term>
<term>Hovanessian</term>
<term>Important role</term>
<term>Indicator plates</term>
<term>Inhibitor</term>
<term>Interferon</term>
<term>Interferon cytokine</term>
<term>Internal fragments</term>
<term>Iptg</term>
<term>Katze</term>
<term>Kinase</term>
<term>Kinase activity</term>
<term>Lacz</term>
<term>Lacz expression</term>
<term>Lacz reporter</term>
<term>Lamb mutants</term>
<term>Library plasmids</term>
<term>Lysis buffer</term>
<term>Lysis plaques</term>
<term>Mathews</term>
<term>Meurs</term>
<term>Modulating kinase dimerization</term>
<term>Monoclonal antibody</term>
<term>Mrna translation</term>
<term>Mutant</term>
<term>Natl</term>
<term>Nonfat milk powder</term>
<term>Nonfunctional form</term>
<term>Other proteins</term>
<term>Overnight cultures</term>
<term>Overnight incubation</term>
<term>Pellet</term>
<term>Phage</term>
<term>Phage lytic growth</term>
<term>Physical association</term>
<term>Plaque assay</term>
<term>Plasmid</term>
<term>Plasmid selection</term>
<term>Positive clones</term>
<term>Potential mechanisms</term>
<term>Proc</term>
<term>Promoter</term>
<term>Protein</term>
<term>Protein interaction</term>
<term>Protein interactions</term>
<term>Protein kinase</term>
<term>Protein kinases</term>
<term>Pulldown assay</term>
<term>Repressor</term>
<term>Repressor activity</term>
<term>Repressor fusion</term>
<term>Repressor fusion system</term>
<term>Repressor system</term>
<term>Resistant cells</term>
<term>Resultant plasmids</term>
<term>Room temperature</term>
<term>Sample buffer</term>
<term>Second protein</term>
<term>Sterile toothpick</term>
<term>Supernatant</term>
<term>Transformants</term>
<term>Translation products</term>
<term>Translational control</term>
<term>Unpublished data</term>
<term>Vaccinia virus</term>
<term>Viral</term>
<term>Viral infection</term>
<term>Viral transcripts</term>
<term>Virol</term>
<term>Virology</term>
<term>Western blot analysis</term>
<term>White colony color</term>
<term>Yeast</term>
<term>Yeast colonies</term>
<term>Yeast strain</term>
<term>Yeast system</term>
<term>Yeast systems</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The interferon-induced protein kinase, PKR, is a pivotal component of interferon (IFN)-induced cellular antiviral and antiproliferative response. The identification and characterization of proteins, of both viral and cellular origins, that interact with PKR have proven to be a valuable probe for unraveling the cellular regulation and function of PKR. Several studies have demonstrated that PKR forms dimers and that dimerization is likely to be required for activation and/or catalytic function. It is therefore important to elucidate the mechanism of PKR dimer formation and the role of PKR effectors in modulating kinase dimerization. Herein we describe the use of the two genetic approaches, the λ repressor fusion and the yeast two-hybrid systems, to detect and analyze homo- and heterotypic interactions with PKR. We also describe several biochemical methodologies commonly used in our laboratory to validate the genetic results. Although the examples in this article focus on PKR, the techniques can easily be adapted to investigate protein–protein associations in a variety of experimental systems. Finally, given the important role of PKR as a mediator of IFN-induced antiviral and antiproliferative effects, these studies may provide clues to the development of reagents that target PKR to enhance the therapeutic use of IFN in the treatment of disease.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Tan, Seng Lai" sort="Tan, Seng Lai" uniqKey="Tan S" first="Seng-Lai" last="Tan">Seng-Lai Tan</name>
</region>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003B07 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003B07 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:2CFF74C27C2BF2CC83F39DDCE96E520923C8EF08
   |texte=   Using Genetic Means to Dissect Homologous and Heterologous Protein–Protein Interactions of PKR, the Interferon-Induced Protein Kinase
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021